Metamath Proof Explorer


Theorem cdlemg18

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg18 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
9 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGT
10 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
11 1 2 3 4 5 6 7 cdlemg18d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQA
12 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGPP
13 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
14 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFT
15 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPQ
16 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q
17 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
18 1 2 3 4 5 6 7 cdlemg17 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGP˙FGP˙Q˙FGQ=P˙FGP˙Q˙FGQ
19 13 14 9 15 12 16 17 18 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGP˙FGP˙Q˙FGQ=P˙FGP˙Q˙FGQ
20 1 4 5 6 ltrnatlw KHLWHGTPA¬P˙WP˙FGP˙Q˙FGQAGPPGP˙FGP˙Q˙FGQ=P˙FGP˙Q˙FGQP˙FGP˙Q˙FGQ˙W
21 8 9 10 11 12 19 20 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙W