Metamath Proof Explorer


Theorem cdlemg17

Description: Part of Lemma G of Crawley p. 117, lines 7 and 8. We show an argument whose value at G equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P ˙ Q ˙ F G Q = P ˙ F G P ˙ Q ˙ F G Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
9 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
10 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A
11 eqid Base K = Base K
12 11 4 atbase P A P Base K
13 10 12 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Base K
14 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F T
15 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
16 8 14 9 10 15 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P A
17 11 4 atbase F G P A F G P Base K
18 16 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P Base K
19 11 2 5 6 ltrnj K HL W H G T P Base K F G P Base K G P ˙ F G P = G P ˙ G F G P
20 8 9 13 18 19 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P = G P ˙ G F G P
21 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
22 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
23 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
24 1 2 3 4 5 6 7 cdlemg17b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
25 21 9 22 23 24 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
26 25 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = F Q
27 26 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F G P = G F Q
28 1 2 3 4 5 6 7 cdlemg17jq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F Q = F G Q
29 27 28 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F G P = F G Q
30 25 29 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ G F G P = Q ˙ F G Q
31 20 30 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P = Q ˙ F G Q
32 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
33 11 4 atbase Q A Q Base K
34 32 33 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q Base K
35 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
36 8 14 9 32 35 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q A
37 11 4 atbase F G Q A F G Q Base K
38 36 37 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q Base K
39 11 2 5 6 ltrnj K HL W H G T Q Base K F G Q Base K G Q ˙ F G Q = G Q ˙ G F G Q
40 8 9 34 38 39 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q ˙ F G Q = G Q ˙ G F G Q
41 1 2 3 4 5 6 7 cdlemg17bq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q = P
42 41 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q = F P
43 42 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F G Q = G F P
44 1 2 3 4 5 6 7 cdlemg17j K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F P = F G P
45 43 44 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G F G Q = F G P
46 41 45 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q ˙ G F G Q = P ˙ F G P
47 40 46 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q ˙ F G Q = P ˙ F G P
48 31 47 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P ˙ G Q ˙ F G Q = Q ˙ F G Q ˙ P ˙ F G P
49 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
50 11 2 4 hlatjcl K HL P A F G P A P ˙ F G P Base K
51 49 10 16 50 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P Base K
52 11 2 4 hlatjcl K HL Q A F G Q A Q ˙ F G Q Base K
53 49 32 36 52 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q Base K
54 11 3 5 6 ltrnm K HL W H G T P ˙ F G P Base K Q ˙ F G Q Base K G P ˙ F G P ˙ Q ˙ F G Q = G P ˙ F G P ˙ G Q ˙ F G Q
55 8 9 51 53 54 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P ˙ Q ˙ F G Q = G P ˙ F G P ˙ G Q ˙ F G Q
56 49 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K Lat
57 11 3 latmcom K Lat P ˙ F G P Base K Q ˙ F G Q Base K P ˙ F G P ˙ Q ˙ F G Q = Q ˙ F G Q ˙ P ˙ F G P
58 56 51 53 57 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q = Q ˙ F G Q ˙ P ˙ F G P
59 48 55 58 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ F G P ˙ Q ˙ F G Q = P ˙ F G P ˙ Q ˙ F G Q