Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T ) |
10 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
13 |
10 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. ( Base ` K ) ) |
14 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T ) |
15 |
1 4 5 6
|
ltrncoat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) |
16 |
8 14 9 10 15
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` P ) ) e. A ) |
17 |
11 4
|
atbase |
|- ( ( F ` ( G ` P ) ) e. A -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` P ) ) e. ( Base ` K ) ) |
19 |
11 2 5 6
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. ( Base ` K ) /\ ( F ` ( G ` P ) ) e. ( Base ` K ) ) ) -> ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( G ` P ) .\/ ( G ` ( F ` ( G ` P ) ) ) ) ) |
20 |
8 9 13 18 19
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( G ` P ) .\/ ( G ` ( F ` ( G ` P ) ) ) ) ) |
21 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
22 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q ) |
23 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) |
24 |
1 2 3 4 5 6 7
|
cdlemg17b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) = Q ) |
25 |
21 9 22 23 24
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) = Q ) |
26 |
25
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` P ) ) = ( F ` Q ) ) |
27 |
26
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` ( G ` P ) ) ) = ( G ` ( F ` Q ) ) ) |
28 |
1 2 3 4 5 6 7
|
cdlemg17jq |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` Q ) ) = ( F ` ( G ` Q ) ) ) |
29 |
27 28
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` ( G ` P ) ) ) = ( F ` ( G ` Q ) ) ) |
30 |
25 29
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( G ` P ) .\/ ( G ` ( F ` ( G ` P ) ) ) ) = ( Q .\/ ( F ` ( G ` Q ) ) ) ) |
31 |
20 30
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) = ( Q .\/ ( F ` ( G ` Q ) ) ) ) |
32 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A ) |
33 |
11 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
34 |
32 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. ( Base ` K ) ) |
35 |
1 4 5 6
|
ltrncoat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ Q e. A ) -> ( F ` ( G ` Q ) ) e. A ) |
36 |
8 14 9 32 35
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) e. A ) |
37 |
11 4
|
atbase |
|- ( ( F ` ( G ` Q ) ) e. A -> ( F ` ( G ` Q ) ) e. ( Base ` K ) ) |
38 |
36 37
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) e. ( Base ` K ) ) |
39 |
11 2 5 6
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. ( Base ` K ) /\ ( F ` ( G ` Q ) ) e. ( Base ` K ) ) ) -> ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( G ` Q ) .\/ ( G ` ( F ` ( G ` Q ) ) ) ) ) |
40 |
8 9 34 38 39
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( G ` Q ) .\/ ( G ` ( F ` ( G ` Q ) ) ) ) ) |
41 |
1 2 3 4 5 6 7
|
cdlemg17bq |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` Q ) = P ) |
42 |
41
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) = ( F ` P ) ) |
43 |
42
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` ( G ` Q ) ) ) = ( G ` ( F ` P ) ) ) |
44 |
1 2 3 4 5 6 7
|
cdlemg17j |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` P ) ) = ( F ` ( G ` P ) ) ) |
45 |
43 44
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( F ` ( G ` Q ) ) ) = ( F ` ( G ` P ) ) ) |
46 |
41 45
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( G ` Q ) .\/ ( G ` ( F ` ( G ` Q ) ) ) ) = ( P .\/ ( F ` ( G ` P ) ) ) ) |
47 |
40 46
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( P .\/ ( F ` ( G ` P ) ) ) ) |
48 |
31 47
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) ./\ ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) |
49 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) |
50 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) |
51 |
49 10 16 50
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) |
52 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) |
53 |
49 32 36 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) |
54 |
11 3 5 6
|
ltrnm |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) ) -> ( G ` ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) = ( ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) ./\ ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) ) |
55 |
8 9 51 53 54
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) = ( ( G ` ( P .\/ ( F ` ( G ` P ) ) ) ) ./\ ( G ` ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) ) |
56 |
49
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. Lat ) |
57 |
11 3
|
latmcom |
|- ( ( K e. Lat /\ ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) |
58 |
56 51 53 57
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) |
59 |
48 55 58
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) = ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) ) |