| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) | 
						
							| 9 |  | simpl1l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> K e. HL ) | 
						
							| 10 |  | simpl21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> P e. A ) | 
						
							| 11 |  | simpl1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simpl23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> F e. T ) | 
						
							| 13 |  | simpl22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> Q e. A ) | 
						
							| 14 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ Q e. A ) -> ( F ` Q ) e. A ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` Q ) e. A ) | 
						
							| 16 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) | 
						
							| 17 | 11 12 10 16 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` P ) e. A ) | 
						
							| 18 |  | simpl3l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> P =/= Q ) | 
						
							| 19 | 4 5 6 | ltrn11at |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> ( F ` P ) =/= ( F ` Q ) ) | 
						
							| 20 | 11 12 10 13 18 19 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` P ) =/= ( F ` Q ) ) | 
						
							| 21 | 20 | necomd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( F ` Q ) =/= ( F ` P ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) | 
						
							| 23 | 2 4 | hlatexch4 |  |-  ( ( ( K e. HL /\ P e. A /\ ( F ` Q ) e. A ) /\ ( Q e. A /\ ( F ` P ) e. A ) /\ ( P =/= Q /\ ( F ` Q ) =/= ( F ` P ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) ) -> ( P .\/ Q ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 24 | 9 10 15 13 17 18 21 22 23 | syl323anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( P .\/ Q ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) /\ ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) | 
						
							| 26 | 25 | ex |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` Q ) ) = ( Q .\/ ( F ` P ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) ) | 
						
							| 27 | 26 | necon3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) ) | 
						
							| 28 | 8 27 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) |