| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemg18b.u |  |-  U = ( ( P .\/ Q ) ./\ W ) | 
						
							| 9 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) | 
						
							| 10 |  | simp3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> P .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 11 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> K e. HL ) | 
						
							| 12 |  | simp1r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> W e. H ) | 
						
							| 13 |  | simp21 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 14 |  | simp22l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> Q e. A ) | 
						
							| 15 |  | simp3l1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> P =/= Q ) | 
						
							| 16 | 1 2 3 4 5 8 | cdleme0a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) | 
						
							| 17 | 11 12 13 14 15 16 | syl212anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> U e. A ) | 
						
							| 18 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 19 |  | simp23 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> F e. T ) | 
						
							| 20 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ Q e. A ) -> ( F ` Q ) e. A ) | 
						
							| 21 | 18 19 14 20 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( F ` Q ) e. A ) | 
						
							| 22 | 1 2 4 | hlatlej1 |  |-  ( ( K e. HL /\ U e. A /\ ( F ` Q ) e. A ) -> U .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 23 | 11 17 21 22 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> U .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 24 | 11 | hllatd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> K e. Lat ) | 
						
							| 25 |  | simp21l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> P e. A ) | 
						
							| 26 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 27 | 26 4 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 28 | 25 27 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 29 | 26 4 | atbase |  |-  ( U e. A -> U e. ( Base ` K ) ) | 
						
							| 30 | 17 29 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> U e. ( Base ` K ) ) | 
						
							| 31 | 26 2 4 | hlatjcl |  |-  ( ( K e. HL /\ U e. A /\ ( F ` Q ) e. A ) -> ( U .\/ ( F ` Q ) ) e. ( Base ` K ) ) | 
						
							| 32 | 11 17 21 31 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( U .\/ ( F ` Q ) ) e. ( Base ` K ) ) | 
						
							| 33 | 26 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( U .\/ ( F ` Q ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( U .\/ ( F ` Q ) ) /\ U .<_ ( U .\/ ( F ` Q ) ) ) <-> ( P .\/ U ) .<_ ( U .\/ ( F ` Q ) ) ) ) | 
						
							| 34 | 24 28 30 32 33 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( P .<_ ( U .\/ ( F ` Q ) ) /\ U .<_ ( U .\/ ( F ` Q ) ) ) <-> ( P .\/ U ) .<_ ( U .\/ ( F ` Q ) ) ) ) | 
						
							| 35 | 10 23 34 | mpbi2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( P .\/ U ) .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 36 | 1 2 3 4 5 8 | cdleme0cp |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) | 
						
							| 37 | 11 12 13 14 36 | syl22anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) | 
						
							| 38 |  | simp22 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 39 | 5 6 1 2 4 3 8 | cdlemg2kq |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ U ) ) | 
						
							| 40 | 18 13 38 19 39 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ U ) ) | 
						
							| 41 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` Q ) e. A /\ U e. A ) -> ( ( F ` Q ) .\/ U ) = ( U .\/ ( F ` Q ) ) ) | 
						
							| 42 | 11 21 17 41 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( F ` Q ) .\/ U ) = ( U .\/ ( F ` Q ) ) ) | 
						
							| 43 | 40 42 | eqtr2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( U .\/ ( F ` Q ) ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) | 
						
							| 44 | 35 37 43 | 3brtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( P .\/ Q ) .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) | 
						
							| 45 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) | 
						
							| 46 | 18 19 25 45 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( F ` P ) e. A ) | 
						
							| 47 | 1 2 4 | ps-1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( ( F ` P ) e. A /\ ( F ` Q ) e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( F ` P ) .\/ ( F ` Q ) ) <-> ( P .\/ Q ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) ) | 
						
							| 48 | 11 25 14 15 46 21 47 | syl132anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( P .\/ Q ) .<_ ( ( F ` P ) .\/ ( F ` Q ) ) <-> ( P .\/ Q ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) ) | 
						
							| 49 | 44 48 | mpbid |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( P .\/ Q ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) | 
						
							| 50 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` P ) e. A /\ ( F ` Q ) e. A ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 51 | 11 46 21 50 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 52 | 49 51 | eqtr2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) | 
						
							| 53 | 52 | 3exp |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) -> ( ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) /\ P .<_ ( U .\/ ( F ` Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) ) ) | 
						
							| 54 | 53 | exp4a |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) -> ( ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) -> ( P .<_ ( U .\/ ( F ` Q ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) ) ) ) | 
						
							| 55 | 54 | 3imp |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .<_ ( U .\/ ( F ` Q ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( P .\/ Q ) ) ) | 
						
							| 56 | 55 | necon3ad |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) -> -. P .<_ ( U .\/ ( F ` Q ) ) ) ) | 
						
							| 57 | 9 56 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> -. P .<_ ( U .\/ ( F ` Q ) ) ) |