| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme0.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme0.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme0.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme0.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
6
|
oveq2i |
|- ( P .\/ U ) = ( P .\/ ( ( P .\/ Q ) ./\ W ) ) |
| 8 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> K e. HL ) |
| 9 |
|
simprll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> P e. A ) |
| 10 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> K e. Lat ) |
| 12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 13 |
12 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 14 |
9 13
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> P e. ( Base ` K ) ) |
| 15 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> Q e. A ) |
| 16 |
12 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> Q e. ( Base ` K ) ) |
| 18 |
12 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 19 |
11 14 17 18
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 20 |
12 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> W e. ( Base ` K ) ) |
| 22 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
| 23 |
8 9 15 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> P .<_ ( P .\/ Q ) ) |
| 24 |
12 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ Q ) ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( P .\/ W ) ) ) |
| 25 |
8 9 19 21 23 24
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( P .\/ W ) ) ) |
| 26 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 27 |
1 2 26 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
| 28 |
27
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( ( P .\/ Q ) ./\ ( P .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
| 30 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> K e. OL ) |
| 32 |
12 3 26
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 33 |
31 19 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 34 |
25 29 33
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) ) |
| 35 |
7 34
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) |