| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg18b.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 9 |  | simp33 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 10 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 11 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 12 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 13 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 14 |  | simp22l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 15 |  | simp3l1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 16 | 1 2 3 4 5 8 | cdleme0a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 17 | 11 12 13 14 15 16 | syl212anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 18 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 19 |  | simp23 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 20 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 21 | 18 19 14 20 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 22 | 1 2 4 | hlatlej1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  →  𝑈  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 23 | 11 17 21 22 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑈  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 24 | 11 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 25 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 27 | 26 4 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 28 | 25 27 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 29 | 26 4 | atbase | ⊢ ( 𝑈  ∈  𝐴  →  𝑈  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 17 29 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 26 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  →  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 | 11 17 21 31 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 26 1 2 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  ∧  𝑈  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) )  ↔  ( 𝑃  ∨  𝑈 )  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 34 | 24 28 30 32 33 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  ∧  𝑈  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) )  ↔  ( 𝑃  ∨  𝑈 )  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 35 | 10 23 34 | mpbi2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑃  ∨  𝑈 )  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 36 | 1 2 3 4 5 8 | cdleme0cp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 37 | 11 12 13 14 36 | syl22anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 38 |  | simp22 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 39 | 5 6 1 2 4 3 8 | cdlemg2kq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  𝑈 ) ) | 
						
							| 40 | 18 13 38 19 39 | syl121anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  𝑈 ) ) | 
						
							| 41 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  𝑈 )  =  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 42 | 11 21 17 41 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  𝑈 )  =  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 43 | 40 42 | eqtr2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 44 | 35 37 43 | 3brtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 45 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 46 | 18 19 25 45 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 47 | 1 2 4 | ps-1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  ↔  ( 𝑃  ∨  𝑄 )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 48 | 11 25 14 15 46 21 47 | syl132anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  ↔  ( 𝑃  ∨  𝑄 )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 49 | 44 48 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 50 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 51 | 11 46 21 50 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 52 | 49 51 | eqtr2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 53 | 52 | 3exp | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  →  ( ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  ∧  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 54 | 53 | exp4a | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) ) ) ) | 
						
							| 55 | 54 | 3imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 56 | 55 | necon3ad | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 )  →  ¬  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 57 | 9 56 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑃  ≤  ( 𝑈  ∨  ( 𝐹 ‘ 𝑄 ) ) ) |