Metamath Proof Explorer


Theorem cdlemg18c

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg18b.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdlemg18c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹𝑄 ) ) ( 𝑄 ( 𝐹𝑃 ) ) ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg18b.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
9 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
10 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
11 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
12 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
14 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
15 1 2 3 4 5 8 cdleme0a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
16 9 11 12 13 14 15 syl212anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑈𝐴 )
17 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
18 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐹𝑇 )
19 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑄𝐴 ) → ( 𝐹𝑄 ) ∈ 𝐴 )
20 17 18 13 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑄 ) ∈ 𝐴 )
21 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
22 17 18 10 21 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑃 ) ∈ 𝐴 )
23 1 2 3 4 5 6 7 8 cdlemg18b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑈 ( 𝐹𝑄 ) ) )
24 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑃 ) ≠ 𝑄 )
25 24 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄 ≠ ( 𝐹𝑃 ) )
26 23 25 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ¬ 𝑃 ( 𝑈 ( 𝐹𝑄 ) ) ∧ 𝑄 ≠ ( 𝐹𝑃 ) ) )
27 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) )
28 1 2 3 4 5 6 7 cdlemg18a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) )
29 17 10 13 18 14 27 28 syl132anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) )
30 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑃 𝑄 ) )
31 9 10 13 30 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄 ( 𝑃 𝑄 ) )
32 1 2 3 4 5 8 cdleme0cp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ) → ( 𝑃 𝑈 ) = ( 𝑃 𝑄 ) )
33 9 11 12 13 32 syl22anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 𝑈 ) = ( 𝑃 𝑄 ) )
34 31 33 breqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄 ( 𝑃 𝑈 ) )
35 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑄 ) ∈ 𝐴 ∧ ( 𝐹𝑃 ) ∈ 𝐴 ) → ( 𝐹𝑃 ) ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
36 9 20 22 35 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑃 ) ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
37 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
38 5 6 1 2 4 3 8 cdlemg2kq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) 𝑈 ) )
39 17 12 37 18 38 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) 𝑈 ) )
40 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑃 ) ∈ 𝐴 ∧ ( 𝐹𝑄 ) ∈ 𝐴 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
41 9 22 20 40 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
42 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑄 ) ∈ 𝐴𝑈𝐴 ) → ( ( 𝐹𝑄 ) 𝑈 ) = ( 𝑈 ( 𝐹𝑄 ) ) )
43 9 20 16 42 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑄 ) 𝑈 ) = ( 𝑈 ( 𝐹𝑄 ) ) )
44 39 41 43 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) = ( 𝑈 ( 𝐹𝑄 ) ) )
45 36 44 breqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹𝑃 ) ( 𝑈 ( 𝐹𝑄 ) ) )
46 34 45 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑄 ( 𝑃 𝑈 ) ∧ ( 𝐹𝑃 ) ( 𝑈 ( 𝐹𝑄 ) ) ) )
47 1 2 3 4 ps-2c ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴 ) ∧ ( ( 𝐹𝑄 ) ∈ 𝐴𝑄𝐴 ∧ ( 𝐹𝑃 ) ∈ 𝐴 ) ∧ ( ( ¬ 𝑃 ( 𝑈 ( 𝐹𝑄 ) ) ∧ 𝑄 ≠ ( 𝐹𝑃 ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) ∧ ( 𝑄 ( 𝑃 𝑈 ) ∧ ( 𝐹𝑃 ) ( 𝑈 ( 𝐹𝑄 ) ) ) ) ) → ( ( 𝑃 ( 𝐹𝑄 ) ) ( 𝑄 ( 𝐹𝑃 ) ) ) ∈ 𝐴 )
48 9 10 16 20 13 22 26 29 46 47 syl333anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹𝑄 ) ) ( 𝑄 ( 𝐹𝑃 ) ) ) ∈ 𝐴 )