Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg18b.u |
|
9 |
|
simp1l |
|
10 |
|
simp21l |
|
11 |
|
simp1r |
|
12 |
|
simp21 |
|
13 |
|
simp22l |
|
14 |
|
simp31 |
|
15 |
1 2 3 4 5 8
|
cdleme0a |
|
16 |
9 11 12 13 14 15
|
syl212anc |
|
17 |
|
simp1 |
|
18 |
|
simp23 |
|
19 |
1 4 5 6
|
ltrnat |
|
20 |
17 18 13 19
|
syl3anc |
|
21 |
1 4 5 6
|
ltrnat |
|
22 |
17 18 10 21
|
syl3anc |
|
23 |
1 2 3 4 5 6 7 8
|
cdlemg18b |
|
24 |
|
simp32 |
|
25 |
24
|
necomd |
|
26 |
23 25
|
jca |
|
27 |
|
simp33 |
|
28 |
1 2 3 4 5 6 7
|
cdlemg18a |
|
29 |
17 10 13 18 14 27 28
|
syl132anc |
|
30 |
1 2 4
|
hlatlej2 |
|
31 |
9 10 13 30
|
syl3anc |
|
32 |
1 2 3 4 5 8
|
cdleme0cp |
|
33 |
9 11 12 13 32
|
syl22anc |
|
34 |
31 33
|
breqtrrd |
|
35 |
1 2 4
|
hlatlej2 |
|
36 |
9 20 22 35
|
syl3anc |
|
37 |
|
simp22 |
|
38 |
5 6 1 2 4 3 8
|
cdlemg2kq |
|
39 |
17 12 37 18 38
|
syl121anc |
|
40 |
2 4
|
hlatjcom |
|
41 |
9 22 20 40
|
syl3anc |
|
42 |
2 4
|
hlatjcom |
|
43 |
9 20 16 42
|
syl3anc |
|
44 |
39 41 43
|
3eqtr3d |
|
45 |
36 44
|
breqtrd |
|
46 |
34 45
|
jca |
|
47 |
1 2 3 4
|
ps-2c |
|
48 |
9 10 16 20 13 22 26 29 46 47
|
syl333anc |
|