Metamath Proof Explorer


Theorem cdlemg2kq

Description: cdlemg2k with P and Q swapped. TODO: FIX COMMENT. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg2inv.h H = LHyp K
cdlemg2inv.t T = LTrn K W
cdlemg2j.l ˙ = K
cdlemg2j.j ˙ = join K
cdlemg2j.a A = Atoms K
cdlemg2j.m ˙ = meet K
cdlemg2j.u U = P ˙ Q ˙ W
Assertion cdlemg2kq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q = F Q ˙ U

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H = LHyp K
2 cdlemg2inv.t T = LTrn K W
3 cdlemg2j.l ˙ = K
4 cdlemg2j.j ˙ = join K
5 cdlemg2j.a A = Atoms K
6 cdlemg2j.m ˙ = meet K
7 cdlemg2j.u U = P ˙ Q ˙ W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K HL W H
9 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T Q A ¬ Q ˙ W
10 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P A ¬ P ˙ W
11 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F T
12 eqid Q ˙ P ˙ W = Q ˙ P ˙ W
13 1 2 3 4 5 6 12 cdlemg2k K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T F Q ˙ F P = F Q ˙ Q ˙ P ˙ W
14 8 9 10 11 13 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F Q ˙ F P = F Q ˙ Q ˙ P ˙ W
15 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K HL
16 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P A
17 3 5 1 2 ltrnat K HL W H F T P A F P A
18 8 11 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P A
19 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T Q A
20 3 5 1 2 ltrnat K HL W H F T Q A F Q A
21 8 11 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F Q A
22 4 5 hlatjcom K HL F P A F Q A F P ˙ F Q = F Q ˙ F P
23 15 18 21 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q = F Q ˙ F P
24 4 5 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
25 15 16 19 24 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P ˙ Q = Q ˙ P
26 25 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P ˙ Q ˙ W = Q ˙ P ˙ W
27 7 26 eqtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T U = Q ˙ P ˙ W
28 27 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F Q ˙ U = F Q ˙ Q ˙ P ˙ W
29 14 23 28 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q = F Q ˙ U