Metamath Proof Explorer


Theorem cdlemg2kq

Description: cdlemg2k with P and Q swapped. TODO: FIX COMMENT. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg2inv.h H=LHypK
cdlemg2inv.t T=LTrnKW
cdlemg2j.l ˙=K
cdlemg2j.j ˙=joinK
cdlemg2j.a A=AtomsK
cdlemg2j.m ˙=meetK
cdlemg2j.u U=P˙Q˙W
Assertion cdlemg2kq KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FQ˙U

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H=LHypK
2 cdlemg2inv.t T=LTrnKW
3 cdlemg2j.l ˙=K
4 cdlemg2j.j ˙=joinK
5 cdlemg2j.a A=AtomsK
6 cdlemg2j.m ˙=meetK
7 cdlemg2j.u U=P˙Q˙W
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTKHLWH
9 simp2r KHLWHPA¬P˙WQA¬Q˙WFTQA¬Q˙W
10 simp2l KHLWHPA¬P˙WQA¬Q˙WFTPA¬P˙W
11 simp3 KHLWHPA¬P˙WQA¬Q˙WFTFT
12 eqid Q˙P˙W=Q˙P˙W
13 1 2 3 4 5 6 12 cdlemg2k KHLWHQA¬Q˙WPA¬P˙WFTFQ˙FP=FQ˙Q˙P˙W
14 8 9 10 11 13 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTFQ˙FP=FQ˙Q˙P˙W
15 simp1l KHLWHPA¬P˙WQA¬Q˙WFTKHL
16 simp2ll KHLWHPA¬P˙WQA¬Q˙WFTPA
17 3 5 1 2 ltrnat KHLWHFTPAFPA
18 8 11 16 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTFPA
19 simp2rl KHLWHPA¬P˙WQA¬Q˙WFTQA
20 3 5 1 2 ltrnat KHLWHFTQAFQA
21 8 11 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTFQA
22 4 5 hlatjcom KHLFPAFQAFP˙FQ=FQ˙FP
23 15 18 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FQ˙FP
24 4 5 hlatjcom KHLPAQAP˙Q=Q˙P
25 15 16 19 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTP˙Q=Q˙P
26 25 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTP˙Q˙W=Q˙P˙W
27 7 26 eqtrid KHLWHPA¬P˙WQA¬Q˙WFTU=Q˙P˙W
28 27 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTFQ˙U=FQ˙Q˙P˙W
29 14 23 28 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FQ˙U