| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg2inv.h |
|
| 2 |
|
cdlemg2inv.t |
|
| 3 |
|
cdlemg2j.l |
|
| 4 |
|
cdlemg2j.j |
|
| 5 |
|
cdlemg2j.a |
|
| 6 |
|
cdlemg2j.m |
|
| 7 |
|
cdlemg2j.u |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp2r |
|
| 10 |
|
simp2l |
|
| 11 |
|
simp3 |
|
| 12 |
|
eqid |
|
| 13 |
1 2 3 4 5 6 12
|
cdlemg2k |
|
| 14 |
8 9 10 11 13
|
syl121anc |
|
| 15 |
|
simp1l |
|
| 16 |
|
simp2ll |
|
| 17 |
3 5 1 2
|
ltrnat |
|
| 18 |
8 11 16 17
|
syl3anc |
|
| 19 |
|
simp2rl |
|
| 20 |
3 5 1 2
|
ltrnat |
|
| 21 |
8 11 19 20
|
syl3anc |
|
| 22 |
4 5
|
hlatjcom |
|
| 23 |
15 18 21 22
|
syl3anc |
|
| 24 |
4 5
|
hlatjcom |
|
| 25 |
15 16 19 24
|
syl3anc |
|
| 26 |
25
|
oveq1d |
|
| 27 |
7 26
|
eqtrid |
|
| 28 |
27
|
oveq2d |
|
| 29 |
14 23 28
|
3eqtr4d |
|