Metamath Proof Explorer


Theorem cdlemg18b

Description: Lemma for cdlemg18c . TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg18b.u U=P˙Q˙W
Assertion cdlemg18b KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙Q¬P˙U˙FQ

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg18b.u U=P˙Q˙W
9 simp33 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQ˙FPP˙Q
10 simp3r KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙U˙FQ
11 simp1l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQKHL
12 simp1r KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQWH
13 simp21 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQPA¬P˙W
14 simp22l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQQA
15 simp3l1 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQPQ
16 1 2 3 4 5 8 cdleme0a KHLWHPA¬P˙WQAPQUA
17 11 12 13 14 15 16 syl212anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQUA
18 simp1 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQKHLWH
19 simp23 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFT
20 1 4 5 6 ltrnat KHLWHFTQAFQA
21 18 19 14 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQA
22 1 2 4 hlatlej1 KHLUAFQAU˙U˙FQ
23 11 17 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQU˙U˙FQ
24 11 hllatd KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQKLat
25 simp21l KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQPA
26 eqid BaseK=BaseK
27 26 4 atbase PAPBaseK
28 25 27 syl KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQPBaseK
29 26 4 atbase UAUBaseK
30 17 29 syl KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQUBaseK
31 26 2 4 hlatjcl KHLUAFQAU˙FQBaseK
32 11 17 21 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQU˙FQBaseK
33 26 1 2 latjle12 KLatPBaseKUBaseKU˙FQBaseKP˙U˙FQU˙U˙FQP˙U˙U˙FQ
34 24 28 30 32 33 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙U˙FQU˙U˙FQP˙U˙U˙FQ
35 10 23 34 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙U˙U˙FQ
36 1 2 3 4 5 8 cdleme0cp KHLWHPA¬P˙WQAP˙U=P˙Q
37 11 12 13 14 36 syl22anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙U=P˙Q
38 simp22 KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQQA¬Q˙W
39 5 6 1 2 4 3 8 cdlemg2kq KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FQ˙U
40 18 13 38 19 39 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFP˙FQ=FQ˙U
41 2 4 hlatjcom KHLFQAUAFQ˙U=U˙FQ
42 11 21 17 41 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQ˙U=U˙FQ
43 40 42 eqtr2d KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQU˙FQ=FP˙FQ
44 35 37 43 3brtr3d KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙Q˙FP˙FQ
45 1 4 5 6 ltrnat KHLWHFTPAFPA
46 18 19 25 45 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFPA
47 1 2 4 ps-1 KHLPAQAPQFPAFQAP˙Q˙FP˙FQP˙Q=FP˙FQ
48 11 25 14 15 46 21 47 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙Q˙FP˙FQP˙Q=FP˙FQ
49 44 48 mpbid KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQP˙Q=FP˙FQ
50 2 4 hlatjcom KHLFPAFQAFP˙FQ=FQ˙FP
51 11 46 21 50 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFP˙FQ=FQ˙FP
52 49 51 eqtr2d KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQ˙FP=P˙Q
53 52 3exp KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQ˙FP=P˙Q
54 53 exp4a KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQ˙FP=P˙Q
55 54 3imp KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙U˙FQFQ˙FP=P˙Q
56 55 necon3ad KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QFQ˙FPP˙Q¬P˙U˙FQ
57 9 56 mpd KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙Q¬P˙U˙FQ