| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemg18b.u |  |-  U = ( ( P .\/ Q ) ./\ W ) | 
						
							| 9 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> K e. HL ) | 
						
							| 10 |  | simp21l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> P e. A ) | 
						
							| 11 |  | simp1r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> W e. H ) | 
						
							| 12 |  | simp21 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 13 |  | simp22l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> Q e. A ) | 
						
							| 14 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> P =/= Q ) | 
						
							| 15 | 1 2 3 4 5 8 | cdleme0a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) | 
						
							| 16 | 9 11 12 13 14 15 | syl212anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> U e. A ) | 
						
							| 17 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 18 |  | simp23 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> F e. T ) | 
						
							| 19 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ Q e. A ) -> ( F ` Q ) e. A ) | 
						
							| 20 | 17 18 13 19 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( F ` Q ) e. A ) | 
						
							| 21 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) | 
						
							| 22 | 17 18 10 21 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( F ` P ) e. A ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 | cdlemg18b |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> -. P .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 24 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( F ` P ) =/= Q ) | 
						
							| 25 | 24 | necomd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> Q =/= ( F ` P ) ) | 
						
							| 26 | 23 25 | jca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( -. P .<_ ( U .\/ ( F ` Q ) ) /\ Q =/= ( F ` P ) ) ) | 
						
							| 27 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 | cdlemg18a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ F e. T ) /\ ( P =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) | 
						
							| 29 | 17 10 13 18 14 27 28 | syl132anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) ) | 
						
							| 30 | 1 2 4 | hlatlej2 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) | 
						
							| 31 | 9 10 13 30 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ Q ) ) | 
						
							| 32 | 1 2 3 4 5 8 | cdleme0cp |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) | 
						
							| 33 | 9 11 12 13 32 | syl22anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( P .\/ U ) = ( P .\/ Q ) ) | 
						
							| 34 | 31 33 | breqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ U ) ) | 
						
							| 35 | 1 2 4 | hlatlej2 |  |-  ( ( K e. HL /\ ( F ` Q ) e. A /\ ( F ` P ) e. A ) -> ( F ` P ) .<_ ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 36 | 9 20 22 35 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( F ` P ) .<_ ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 37 |  | simp22 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 38 | 5 6 1 2 4 3 8 | cdlemg2kq |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ U ) ) | 
						
							| 39 | 17 12 37 18 38 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ U ) ) | 
						
							| 40 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` P ) e. A /\ ( F ` Q ) e. A ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 41 | 9 22 20 40 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` Q ) .\/ ( F ` P ) ) ) | 
						
							| 42 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` Q ) e. A /\ U e. A ) -> ( ( F ` Q ) .\/ U ) = ( U .\/ ( F ` Q ) ) ) | 
						
							| 43 | 9 20 16 42 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ U ) = ( U .\/ ( F ` Q ) ) ) | 
						
							| 44 | 39 41 43 | 3eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` P ) ) = ( U .\/ ( F ` Q ) ) ) | 
						
							| 45 | 36 44 | breqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( F ` P ) .<_ ( U .\/ ( F ` Q ) ) ) | 
						
							| 46 | 34 45 | jca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ U ) /\ ( F ` P ) .<_ ( U .\/ ( F ` Q ) ) ) ) | 
						
							| 47 | 1 2 3 4 | ps-2c |  |-  ( ( ( K e. HL /\ P e. A /\ U e. A ) /\ ( ( F ` Q ) e. A /\ Q e. A /\ ( F ` P ) e. A ) /\ ( ( -. P .<_ ( U .\/ ( F ` Q ) ) /\ Q =/= ( F ` P ) ) /\ ( P .\/ ( F ` Q ) ) =/= ( Q .\/ ( F ` P ) ) /\ ( Q .<_ ( P .\/ U ) /\ ( F ` P ) .<_ ( U .\/ ( F ` Q ) ) ) ) ) -> ( ( P .\/ ( F ` Q ) ) ./\ ( Q .\/ ( F ` P ) ) ) e. A ) | 
						
							| 48 | 9 10 16 20 13 22 26 29 46 47 | syl333anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( P =/= Q /\ ( F ` P ) =/= Q /\ ( ( F ` Q ) .\/ ( F ` P ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` Q ) ) ./\ ( Q .\/ ( F ` P ) ) ) e. A ) |