| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 9 |  | simpl1l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 10 |  | simpl21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | simpl23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 13 |  | simpl22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 14 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 16 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 17 | 11 12 10 16 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 18 |  | simpl3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 19 | 4 5 6 | ltrn11at | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 20 | 11 12 10 13 18 19 | syl113anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 21 | 20 | necomd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≠  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 23 | 2 4 | hlatexch4 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  ∧  ( 𝑄  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝐹 ‘ 𝑄 )  ≠  ( 𝐹 ‘ 𝑃 )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 24 | 9 10 15 13 17 18 21 22 23 | syl323anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  =  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 27 | 26 | necon3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 )  →  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  ≠  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 28 | 8 27 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ( 𝐹 ‘ 𝑄 )  ∨  ( 𝐹 ‘ 𝑃 ) )  ≠  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ 𝑄 ) )  ≠  ( 𝑄  ∨  ( 𝐹 ‘ 𝑃 ) ) ) |