| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simp22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 10 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 12 | 11 4 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 15 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 16 | 8 14 9 10 15 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 17 | 11 4 | atbase | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 | 11 2 5 6 | ltrnj | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 20 | 8 9 13 18 19 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 21 |  | simp1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 22 |  | simp23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 23 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cdlemg17b | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ 𝑃 )  =  𝑄 ) | 
						
							| 25 | 21 9 22 23 24 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ 𝑃 )  =  𝑄 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 | cdlemg17jq | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑄 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) | 
						
							| 29 | 27 28 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) | 
						
							| 30 | 25 29 | oveq12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) | 
						
							| 31 | 20 30 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) | 
						
							| 32 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 33 | 11 4 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 35 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 36 | 8 14 9 32 35 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 37 | 11 4 | atbase | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 39 | 11 2 5 6 | ltrnj | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ) | 
						
							| 40 | 8 9 34 38 39 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 | cdlemg17bq | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ 𝑄 )  =  𝑃 ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 44 | 1 2 3 4 5 6 7 | cdlemg17j | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 45 | 43 44 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) | 
						
							| 46 | 41 45 | oveq12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐺 ‘ 𝑄 )  ∨  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 47 | 40 46 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 48 | 31 47 | oveq12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  ∧  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 49 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 50 | 11 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 51 | 49 10 16 50 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 52 | 11 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 53 | 49 32 36 52 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 54 | 11 3 5 6 | ltrnm | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐺 ‘ ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) )  =  ( ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  ∧  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ) ) | 
						
							| 55 | 8 9 51 53 54 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) )  =  ( ( 𝐺 ‘ ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) )  ∧  ( 𝐺 ‘ ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ) ) | 
						
							| 56 | 49 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 57 | 11 3 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 58 | 56 51 53 57 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  =  ( ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) | 
						
							| 59 | 48 55 58 | 3eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ≠  𝑃  ∧  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) ) )  →  ( 𝐺 ‘ ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) )  =  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ) |