Metamath Proof Explorer


Theorem cdlemg37

Description: Use cdlemg8 to eliminate the =/= ( P .\/ Q ) condition of cdlemg24 . (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg37 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=P˙QKHLWH
9 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=P˙QPA¬P˙WQA¬Q˙WFT
10 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=P˙QGT
11 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=P˙QFGP˙FGQ=P˙Q
12 1 2 3 4 5 6 cdlemg8 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QP˙FGP˙W=Q˙FGQ˙W
13 8 9 10 11 12 syl112anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=P˙QP˙FGP˙W=Q˙FGQ˙W
14 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QKHLWH
15 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QPA¬P˙W
16 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QQA¬Q˙W
17 simpl23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QFT
18 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QGT
19 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QPQ
20 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QFGP˙FGQP˙Q
21 simpl33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r
22 1 2 3 4 5 6 7 cdlemg24 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
23 14 15 16 17 18 19 20 21 22 syl332anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙QP˙FGP˙W=Q˙FGQ˙W
24 13 23 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W