Metamath Proof Explorer


Theorem cdlemg24

Description: Combine cdlemg16z and cdlemg22 . TODO: Fix comment. (Contributed by NM, 24-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg24 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙QKHLWHPA¬P˙WQA¬Q˙W
9 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙QFTGTPQ
10 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙QRF˙P˙Q
11 simpl3l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙QFGP˙FGQP˙Q
12 simpl3r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙Q¬rA¬r˙WP˙r=Q˙r
13 1 2 3 4 5 6 7 cdlemg22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
14 8 9 10 11 12 13 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRF˙P˙QP˙FGP˙W=Q˙FGQ˙W
15 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙QKHLWHPA¬P˙WQA¬Q˙W
16 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙QFTGTPQ
17 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙QRG˙P˙Q
18 simpl3l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙QFGP˙FGQP˙Q
19 simpl3r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q¬rA¬r˙WP˙r=Q˙r
20 1 2 3 4 5 6 7 cdlemg20 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W
21 15 16 17 18 19 20 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙QP˙FGP˙W=Q˙FGQ˙W
22 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬RF˙P˙Q¬RG˙P˙QKHLWHPA¬P˙WQA¬Q˙W
23 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬RF˙P˙Q¬RG˙P˙QFTGTPQ
24 simprl KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬RF˙P˙Q¬RG˙P˙Q¬RF˙P˙Q
25 simprr KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬RF˙P˙Q¬RG˙P˙Q¬RG˙P˙Q
26 1 2 3 4 5 6 7 cdlemg16z KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QP˙FGP˙W=Q˙FGQ˙W
27 22 23 24 25 26 syl112anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬RF˙P˙Q¬RG˙P˙QP˙FGP˙W=Q˙FGQ˙W
28 14 21 27 pm2.61ddan KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W