Metamath Proof Explorer


Theorem cdlemg22

Description: cdlemg21 with ( FP ) =/= P condition removed. (Contributed by NM, 23-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simpl11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P K HL W H
9 simpl12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P P A ¬ P ˙ W
10 simpl13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P Q A ¬ Q ˙ W
11 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P F T
12 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P G T
13 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P F P = P
14 1 2 3 4 5 6 7 cdlemg14f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
15 8 9 10 11 12 13 14 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
16 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
17 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P F T
18 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P G T
19 17 18 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P F T G T
20 simpl23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P P Q
21 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P F P P
22 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P R F ˙ P ˙ Q
23 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P F G P ˙ F G Q P ˙ Q
24 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
25 1 2 3 4 5 6 7 cdlemg21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q F P P R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
26 16 19 20 21 22 23 24 25 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
27 15 26 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q R F ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W