Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp1 |
|
9 |
|
simp32 |
|
10 |
|
simp2l |
|
11 |
|
simp2r |
|
12 |
1 2 3 4 5 6
|
ltrnu |
|
13 |
8 9 10 11 12
|
syl211anc |
|
14 |
|
simp31 |
|
15 |
1 4 5 6
|
ltrnel |
|
16 |
8 9 10 15
|
syl3anc |
|
17 |
|
simp33 |
|
18 |
1 4 5 6
|
ltrnateq |
|
19 |
8 14 10 16 17 18
|
syl131anc |
|
20 |
19
|
oveq2d |
|
21 |
20
|
oveq1d |
|
22 |
1 4 5 6
|
ltrnel |
|
23 |
8 9 11 22
|
syl3anc |
|
24 |
1 4 5 6
|
ltrnateq |
|
25 |
8 14 10 23 17 24
|
syl131anc |
|
26 |
25
|
oveq2d |
|
27 |
26
|
oveq1d |
|
28 |
13 21 27
|
3eqtr4d |
|