Metamath Proof Explorer


Theorem cdlemg14f

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg14f ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → 𝐺𝑇 )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
11 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
12 1 2 3 4 5 6 ltrnu ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺𝑄 ) ) 𝑊 ) )
13 8 9 10 11 12 syl211anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺𝑄 ) ) 𝑊 ) )
14 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → 𝐹𝑇 )
15 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
16 8 9 10 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
17 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝐹𝑃 ) = 𝑃 )
18 1 4 5 6 ltrnateq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = ( 𝐺𝑃 ) )
19 8 14 10 16 17 18 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = ( 𝐺𝑃 ) )
20 19 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 ( 𝐺𝑃 ) ) )
21 20 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) 𝑊 ) )
22 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
23 8 9 11 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
24 1 4 5 6 ltrnateq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( 𝐺𝑄 ) )
25 8 14 10 23 17 24 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( 𝐺𝑄 ) )
26 25 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑄 ( 𝐺𝑄 ) ) )
27 26 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺𝑄 ) ) 𝑊 ) )
28 13 21 27 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )