| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp21r |  | 
						
							| 10 |  | simp21l |  | 
						
							| 11 | 9 10 | jca |  | 
						
							| 12 |  | simp22 |  | 
						
							| 13 |  | simp23 |  | 
						
							| 14 |  | simp31 |  | 
						
							| 15 |  | simp33 |  | 
						
							| 16 | 1 2 3 4 5 6 7 | cdlemg17j |  | 
						
							| 17 | 8 9 10 12 13 14 15 16 | syl133anc |  | 
						
							| 18 |  | simp11 |  | 
						
							| 19 |  | simp13 |  | 
						
							| 20 |  | simp12 |  | 
						
							| 21 | 12 | necomd |  | 
						
							| 22 | 1 4 5 6 | ltrnatneq |  | 
						
							| 23 | 18 10 20 19 13 22 | syl131anc |  | 
						
							| 24 |  | simp11l |  | 
						
							| 25 |  | simp12l |  | 
						
							| 26 |  | simp13l |  | 
						
							| 27 | 2 4 | hlatjcom |  | 
						
							| 28 | 24 25 26 27 | syl3anc |  | 
						
							| 29 | 14 28 | breqtrd |  | 
						
							| 30 |  | eqcom |  | 
						
							| 31 | 30 | anbi2i |  | 
						
							| 32 | 31 | rexbii |  | 
						
							| 33 | 15 32 | sylnib |  | 
						
							| 34 | 1 2 3 4 5 6 7 | cdlemg17j |  | 
						
							| 35 | 18 19 20 9 10 21 23 29 33 34 | syl333anc |  | 
						
							| 36 | 17 35 | oveq12d |  | 
						
							| 37 |  | simp32 |  | 
						
							| 38 | 36 37 | eqnetrrd |  | 
						
							| 39 | 1 2 3 4 5 6 7 | cdlemg19 |  | 
						
							| 40 | 8 11 12 13 14 38 15 39 | syl133anc |  | 
						
							| 41 | 17 | oveq2d |  | 
						
							| 42 | 41 | oveq1d |  | 
						
							| 43 | 35 | oveq2d |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 40 42 44 | 3eqtr4d |  |