Metamath Proof Explorer


Theorem cdlemg21

Description: Version of cdlemg19 with ( RF ) .<_ ( P .\/ Q ) instead of ( RG ) .<_ ( P .\/ Q ) as a condition. (Contributed by NM, 23-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
9 simp21r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐺𝑇 )
10 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
11 9 10 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐺𝑇𝐹𝑇 ) )
12 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝑄 )
13 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑃 ) ≠ 𝑃 )
14 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑅𝐹 ) ( 𝑃 𝑄 ) )
15 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
16 1 2 3 4 5 6 7 cdlemg17j ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐺𝑇𝐹𝑇𝑃𝑄 ) ∧ ( ( 𝐹𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = ( 𝐺 ‘ ( 𝐹𝑃 ) ) )
17 8 9 10 12 13 14 15 16 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = ( 𝐺 ‘ ( 𝐹𝑃 ) ) )
18 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
20 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 12 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝑃 )
22 1 4 5 6 ltrnatneq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑄 ) ≠ 𝑄 )
23 18 10 20 19 13 22 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑄 ) ≠ 𝑄 )
24 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
25 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
26 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝐴 )
27 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
28 24 25 26 27 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
29 14 28 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑅𝐹 ) ( 𝑄 𝑃 ) )
30 eqcom ( ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ↔ ( 𝑄 𝑟 ) = ( 𝑃 𝑟 ) )
31 30 anbi2i ( ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ↔ ( ¬ 𝑟 𝑊 ∧ ( 𝑄 𝑟 ) = ( 𝑃 𝑟 ) ) )
32 31 rexbii ( ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ↔ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑄 𝑟 ) = ( 𝑃 𝑟 ) ) )
33 15 32 sylnib ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑄 𝑟 ) = ( 𝑃 𝑟 ) ) )
34 1 2 3 4 5 6 7 cdlemg17j ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐺𝑇𝐹𝑇𝑄𝑃 ) ∧ ( ( 𝐹𝑄 ) ≠ 𝑄 ∧ ( 𝑅𝐹 ) ( 𝑄 𝑃 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑄 𝑟 ) = ( 𝑃 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( 𝐺 ‘ ( 𝐹𝑄 ) ) )
35 18 19 20 9 10 21 23 29 33 34 syl333anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( 𝐺 ‘ ( 𝐹𝑄 ) ) )
36 17 35 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) )
37 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
38 36 37 eqnetrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
39 1 2 3 4 5 6 7 cdlemg19 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐺𝑇𝐹𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) 𝑊 ) )
40 8 11 12 13 14 38 15 39 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) 𝑊 ) )
41 17 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( 𝑃 ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) )
42 41 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑃 ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) 𝑊 ) )
43 35 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( 𝑄 ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) )
44 43 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐺 ‘ ( 𝐹𝑄 ) ) ) 𝑊 ) )
45 40 42 44 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )