Metamath Proof Explorer


Theorem cdlemg22

Description: cdlemg21 with ( FP ) =/= P condition removed. (Contributed by NM, 23-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simpl12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 simpl13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
11 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐹𝑇 )
12 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐺𝑇 )
13 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑃 ) = 𝑃 )
14 1 2 3 4 5 6 7 cdlemg14f ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
15 8 9 10 11 12 13 14 syl123anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
16 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
17 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝐹𝑇 )
18 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝐺𝑇 )
19 17 18 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑇𝐺𝑇 ) )
20 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝑃𝑄 )
21 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑃 ) ≠ 𝑃 )
22 simpl31 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝑅𝐹 ) ( 𝑃 𝑄 ) )
23 simpl32 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
24 simpl33 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
25 1 2 3 4 5 6 7 cdlemg21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
26 16 19 20 21 22 23 24 25 syl133anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
27 15 26 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )