Metamath Proof Explorer


Theorem cdlemg19

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg19 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKLat
10 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA
11 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFTGT
13 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
14 11 12 10 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGPA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
17 8 10 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGPBaseK
18 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA
19 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
20 11 12 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQA
21 15 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
22 8 18 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQBaseK
23 15 3 latmcom KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQ=Q˙FGQ˙P˙FGP
24 9 17 22 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ=Q˙FGQ˙P˙FGP
25 1 2 3 4 5 6 7 cdlemg19a KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ=P˙FGP˙W
26 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
27 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
28 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPQ
29 28 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQP
30 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGT
31 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGPP
32 1 4 5 6 ltrnatneq KHLWHGTPA¬P˙WQA¬Q˙WGPPGQQ
33 11 30 27 26 31 32 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGQQ
34 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q
35 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
36 8 10 18 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙Q=Q˙P
37 34 36 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙Q˙P
38 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙Q
39 2 4 hlatjcom KHLFGPAFGQAFGP˙FGQ=FGQ˙FGP
40 8 14 20 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=FGQ˙FGP
41 38 40 36 3netr3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQ˙FGPQ˙P
42 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
43 eqcom P˙r=Q˙rQ˙r=P˙r
44 43 anbi2i ¬r˙WP˙r=Q˙r¬r˙WQ˙r=P˙r
45 44 rexbii rA¬r˙WP˙r=Q˙rrA¬r˙WQ˙r=P˙r
46 42 45 sylnib KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WQ˙r=P˙r
47 1 2 3 4 5 6 7 cdlemg19a KHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙PFGQ˙FGPQ˙P¬rA¬r˙WQ˙r=P˙rQ˙FGQ˙P˙FGP=Q˙FGQ˙W
48 11 26 27 12 29 33 37 41 46 47 syl333anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQ˙P˙FGP=Q˙FGQ˙W
49 24 25 48 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙W=Q˙FGQ˙W