Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11l |
|
9 |
8
|
hllatd |
|
10 |
|
simp12l |
|
11 |
|
simp11 |
|
12 |
|
simp21 |
|
13 |
1 4 5 6
|
ltrncoat |
|
14 |
11 12 10 13
|
syl3anc |
|
15 |
|
eqid |
|
16 |
15 2 4
|
hlatjcl |
|
17 |
8 10 14 16
|
syl3anc |
|
18 |
|
simp13l |
|
19 |
1 4 5 6
|
ltrncoat |
|
20 |
11 12 18 19
|
syl3anc |
|
21 |
15 2 4
|
hlatjcl |
|
22 |
8 18 20 21
|
syl3anc |
|
23 |
15 3
|
latmcom |
|
24 |
9 17 22 23
|
syl3anc |
|
25 |
1 2 3 4 5 6 7
|
cdlemg19a |
|
26 |
|
simp13 |
|
27 |
|
simp12 |
|
28 |
|
simp22 |
|
29 |
28
|
necomd |
|
30 |
|
simp21r |
|
31 |
|
simp23 |
|
32 |
1 4 5 6
|
ltrnatneq |
|
33 |
11 30 27 26 31 32
|
syl131anc |
|
34 |
|
simp31 |
|
35 |
2 4
|
hlatjcom |
|
36 |
8 10 18 35
|
syl3anc |
|
37 |
34 36
|
breqtrd |
|
38 |
|
simp32 |
|
39 |
2 4
|
hlatjcom |
|
40 |
8 14 20 39
|
syl3anc |
|
41 |
38 40 36
|
3netr3d |
|
42 |
|
simp33 |
|
43 |
|
eqcom |
|
44 |
43
|
anbi2i |
|
45 |
44
|
rexbii |
|
46 |
42 45
|
sylnib |
|
47 |
1 2 3 4 5 6 7
|
cdlemg19a |
|
48 |
11 26 27 12 29 33 37 41 46 47
|
syl333anc |
|
49 |
24 25 48
|
3eqtr3d |
|