| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) | 
						
							| 9 | 8 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. Lat ) | 
						
							| 10 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) | 
						
							| 11 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F e. T /\ G e. T ) ) | 
						
							| 13 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 14 | 11 12 10 13 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 15 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 16 | 15 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 17 | 8 10 14 16 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) ) | 
						
							| 18 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A ) | 
						
							| 19 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ Q e. A ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 20 | 11 12 18 19 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 21 | 15 2 4 | hlatjcl |  |-  ( ( K e. HL /\ Q e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 22 | 8 18 20 21 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 23 | 15 3 | latmcom |  |-  ( ( K e. Lat /\ ( P .\/ ( F ` ( G ` P ) ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` ( G ` Q ) ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 24 | 9 17 22 23 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 | cdlemg19a |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) = ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) ) | 
						
							| 26 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 27 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 28 |  | simp22 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q ) | 
						
							| 29 | 28 | necomd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q =/= P ) | 
						
							| 30 |  | simp21r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. T ) | 
						
							| 31 |  | simp23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` P ) =/= P ) | 
						
							| 32 | 1 4 5 6 | ltrnatneq |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( G ` P ) =/= P ) -> ( G ` Q ) =/= Q ) | 
						
							| 33 | 11 30 27 26 31 32 | syl131anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G ` Q ) =/= Q ) | 
						
							| 34 |  | simp31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R ` G ) .<_ ( P .\/ Q ) ) | 
						
							| 35 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 36 | 8 10 18 35 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 37 | 34 36 | breqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R ` G ) .<_ ( Q .\/ P ) ) | 
						
							| 38 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) | 
						
							| 39 | 2 4 | hlatjcom |  |-  ( ( K e. HL /\ ( F ` ( G ` P ) ) e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 40 | 8 14 20 39 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) ) | 
						
							| 41 | 38 40 36 | 3netr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) =/= ( Q .\/ P ) ) | 
						
							| 42 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) | 
						
							| 43 |  | eqcom |  |-  ( ( P .\/ r ) = ( Q .\/ r ) <-> ( Q .\/ r ) = ( P .\/ r ) ) | 
						
							| 44 | 43 | anbi2i |  |-  ( ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) | 
						
							| 45 | 44 | rexbii |  |-  ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) | 
						
							| 46 | 42 45 | sylnib |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 | cdlemg19a |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ Q =/= P /\ ( G ` Q ) =/= Q ) /\ ( ( R ` G ) .<_ ( Q .\/ P ) /\ ( ( F ` ( G ` Q ) ) .\/ ( F ` ( G ` P ) ) ) =/= ( Q .\/ P ) /\ -. E. r e. A ( -. r .<_ W /\ ( Q .\/ r ) = ( P .\/ r ) ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) | 
						
							| 48 | 11 26 27 12 29 33 37 41 46 47 | syl333anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ ( P .\/ ( F ` ( G ` P ) ) ) ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) | 
						
							| 49 | 24 25 48 | 3eqtr3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( F e. T /\ G e. T ) /\ P =/= Q /\ ( G ` P ) =/= P ) /\ ( ( R ` G ) .<_ ( P .\/ Q ) /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ W ) = ( ( Q .\/ ( F ` ( G ` Q ) ) ) ./\ W ) ) |