Metamath Proof Explorer


Theorem cdlemk18-2N

Description: Part of proof of Lemma K of Crawley p. 118. Line 22 on p. 119. N , V , Q , C are k, sigma_2 (p), k_2, f_2. (Contributed by NM, 2-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
Assertion cdlemk18-2N KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNP=VFP

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
12 simp11 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WKHL
13 simp12 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WWH
14 12 13 jca KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WKHLWH
15 simp21 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WFT
16 simp22 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WCT
17 simp23 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNT
18 simp33 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WPA¬P˙W
19 simp13 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WRF=RN
20 simp32l KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WFIB
21 simp32r KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WCIB
22 simp31 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WRCRF
23 1 2 3 4 5 6 7 8 9 10 11 cdlemk18 KHLWHFTCTNTPA¬P˙WRF=RNFIBCIBRCRFNP=VFP
24 14 15 16 17 18 19 20 21 22 23 syl333anc KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNP=VFP