Metamath Proof Explorer


Theorem cdlemn11

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11.b B = Base K
cdlemn11.l ˙ = K
cdlemn11.j ˙ = join K
cdlemn11.a A = Atoms K
cdlemn11.h H = LHyp K
cdlemn11.i I = DIsoB K W
cdlemn11.J J = DIsoC K W
cdlemn11.u U = DVecH K W
cdlemn11.s ˙ = LSSum U
Assertion cdlemn11 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W J R J Q ˙ I X R ˙ Q ˙ X

Proof

Step Hyp Ref Expression
1 cdlemn11.b B = Base K
2 cdlemn11.l ˙ = K
3 cdlemn11.j ˙ = join K
4 cdlemn11.a A = Atoms K
5 cdlemn11.h H = LHyp K
6 cdlemn11.i I = DIsoB K W
7 cdlemn11.J J = DIsoC K W
8 cdlemn11.u U = DVecH K W
9 cdlemn11.s ˙ = LSSum U
10 eqid oc K W = oc K W
11 eqid h LTrn K W I B = h LTrn K W I B
12 eqid LTrn K W = LTrn K W
13 eqid trL K W = trL K W
14 eqid TEndo K W = TEndo K W
15 eqid + U = + U
16 eqid ι h LTrn K W | h oc K W = Q = ι h LTrn K W | h oc K W = Q
17 eqid ι h LTrn K W | h oc K W = R = ι h LTrn K W | h oc K W = R
18 1 2 3 4 5 10 11 12 13 14 6 7 8 15 9 16 17 cdlemn11pre K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W J R J Q ˙ I X R ˙ Q ˙ X