Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class ceqsexv2dOLD  
				
		 
		
			
		 
		Description:   Obsolete version of ceqsexv2d  as of 5-Jun-2025.  (Contributed by Thierry Arnoux , 10-Sep-2016)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ceqsexv2dOLD.1   ⊢   A  ∈  V       
					 
					
						ceqsexv2dOLD.2    ⊢   x  =  A    →    φ   ↔   ψ         
					 
					
						ceqsexv2dOLD.3   ⊢   ψ      
					 
				
					Assertion 
					ceqsexv2dOLD   ⊢   ∃  x   φ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ceqsexv2dOLD.1  ⊢   A  ∈  V       
						
							2 
								
							 
							ceqsexv2dOLD.2   ⊢   x  =  A    →    φ   ↔   ψ         
						
							3 
								
							 
							ceqsexv2dOLD.3  ⊢   ψ      
						
							4 
								1  2 
							 
							ceqsexv   ⊢   ∃  x    x  =  A    ∧   φ      ↔   ψ        
						
							5 
								4 
							 
							biimpri   ⊢   ψ   →   ∃  x    x  =  A    ∧   φ           
						
							6 
								
							 
							exsimpr   ⊢   ∃  x    x  =  A    ∧   φ      →   ∃  x   φ          
						
							7 
								3  5  6 
							 
							mp2b  ⊢   ∃  x   φ