Metamath Proof Explorer


Theorem ceqsralt

Description: Restricted quantifier version of ceqsalt . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsralt xψxx=AφψABxBx=Aφψ

Proof

Step Hyp Ref Expression
1 biimt ABxx=AφABxx=Aφ
2 df-ral xBx=AφxxBx=Aφ
3 eleq1 x=AxBAB
4 3 pm5.32ri xBx=AABx=A
5 4 imbi1i xBx=AφABx=Aφ
6 impexp xBx=AφxBx=Aφ
7 impexp ABx=AφABx=Aφ
8 5 6 7 3bitr3i xBx=AφABx=Aφ
9 8 albii xxBx=AφxABx=Aφ
10 19.21v xABx=AφABxx=Aφ
11 2 9 10 3bitrri ABxx=AφxBx=Aφ
12 1 11 bitrdi ABxx=AφxBx=Aφ
13 12 3ad2ant3 xψxx=AφψABxx=AφxBx=Aφ
14 ceqsalt xψxx=AφψABxx=Aφψ
15 13 14 bitr3d xψxx=AφψABxBx=Aφψ