Metamath Proof Explorer


Theorem ceqsrexbv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Hypothesis ceqsrexv.1 x=Aφψ
Assertion ceqsrexbv xBx=AφABψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x=Aφψ
2 r19.42v xBABx=AφABxBx=Aφ
3 eleq1 x=AxBAB
4 3 adantr x=AφxBAB
5 4 pm5.32ri xBx=AφABx=Aφ
6 5 bicomi ABx=AφxBx=Aφ
7 6 baib xBABx=Aφx=Aφ
8 7 rexbiia xBABx=AφxBx=Aφ
9 1 ceqsrexv ABxBx=Aφψ
10 9 pm5.32i ABxBx=AφABψ
11 2 8 10 3bitr3i xBx=AφABψ