Metamath Proof Explorer


Theorem cgrcom

Description: Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcom NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDCDCgrAB

Proof

Step Hyp Ref Expression
1 cgrcomim NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDCDCgrAB
2 cgrcomim NC𝔼ND𝔼NA𝔼NB𝔼NCDCgrABABCgrCD
3 2 3com23 NA𝔼NB𝔼NC𝔼ND𝔼NCDCgrABABCgrCD
4 1 3 impbid NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDCDCgrAB