Metamath Proof Explorer


Theorem cgrcomland

Description: Deduction form of cgrcoml . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrcomlrand.1 φN
cgrcomlrand.2 φA𝔼N
cgrcomlrand.3 φB𝔼N
cgrcomlrand.4 φC𝔼N
cgrcomlrand.5 φD𝔼N
cgrcomlrand.6 φψABCgrCD
Assertion cgrcomland φψBACgrCD

Proof

Step Hyp Ref Expression
1 cgrcomlrand.1 φN
2 cgrcomlrand.2 φA𝔼N
3 cgrcomlrand.3 φB𝔼N
4 cgrcomlrand.4 φC𝔼N
5 cgrcomlrand.5 φD𝔼N
6 cgrcomlrand.6 φψABCgrCD
7 cgrcoml NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrCD
8 1 2 3 4 5 7 syl122anc φABCgrCDBACgrCD
9 8 adantr φψABCgrCDBACgrCD
10 6 9 mpbid φψBACgrCD