Metamath Proof Explorer


Theorem cgrtrand

Description: Deduction form of cgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtrand.1 φN
cgrtrand.2 φA𝔼N
cgrtrand.3 φB𝔼N
cgrtrand.4 φC𝔼N
cgrtrand.5 φD𝔼N
cgrtrand.6 φE𝔼N
cgrtrand.7 φF𝔼N
cgrtrand.8 φψABCgrCD
cgrtrand.9 φψCDCgrEF
Assertion cgrtrand φψABCgrEF

Proof

Step Hyp Ref Expression
1 cgrtrand.1 φN
2 cgrtrand.2 φA𝔼N
3 cgrtrand.3 φB𝔼N
4 cgrtrand.4 φC𝔼N
5 cgrtrand.5 φD𝔼N
6 cgrtrand.6 φE𝔼N
7 cgrtrand.7 φF𝔼N
8 cgrtrand.8 φψABCgrCD
9 cgrtrand.9 φψCDCgrEF
10 cgrtr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDCDCgrEFABCgrEF
11 1 2 3 4 5 6 7 10 syl133anc φABCgrCDCDCgrEFABCgrEF
12 11 adantr φψABCgrCDCDCgrEFABCgrEF
13 8 9 12 mp2and φψABCgrEF