Metamath Proof Explorer
Description: Deduction form of cgrtr . (Contributed by Scott Fenton, 13-Oct-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cgrtrand.1 |
|
|
|
cgrtrand.2 |
|
|
|
cgrtrand.3 |
|
|
|
cgrtrand.4 |
|
|
|
cgrtrand.5 |
|
|
|
cgrtrand.6 |
|
|
|
cgrtrand.7 |
|
|
|
cgrtrand.8 |
|
|
|
cgrtrand.9 |
|
|
Assertion |
cgrtrand |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cgrtrand.1 |
|
2 |
|
cgrtrand.2 |
|
3 |
|
cgrtrand.3 |
|
4 |
|
cgrtrand.4 |
|
5 |
|
cgrtrand.5 |
|
6 |
|
cgrtrand.6 |
|
7 |
|
cgrtrand.7 |
|
8 |
|
cgrtrand.8 |
|
9 |
|
cgrtrand.9 |
|
10 |
|
cgrtr |
|
11 |
1 2 3 4 5 6 7 10
|
syl133anc |
|
12 |
11
|
adantr |
|
13 |
8 9 12
|
mp2and |
|