Metamath Proof Explorer


Theorem cgsexg

Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007)

Ref Expression
Hypotheses cgsexg.1 x=Aχ
cgsexg.2 χφψ
Assertion cgsexg AVxχφψ

Proof

Step Hyp Ref Expression
1 cgsexg.1 x=Aχ
2 cgsexg.2 χφψ
3 2 biimpa χφψ
4 3 exlimiv xχφψ
5 elisset AVxx=A
6 1 eximi xx=Axχ
7 5 6 syl AVxχ
8 2 biimprcd ψχφ
9 8 ancld ψχχφ
10 9 eximdv ψxχxχφ
11 7 10 syl5com AVψxχφ
12 4 11 impbid2 AVxχφψ