Metamath Proof Explorer


Theorem chcon1i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chcon1i A=BB=A

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 2 1 chcon2i B=AA=B
4 eqcom A=BB=A
5 eqcom B=AA=B
6 3 4 5 3bitr4i A=BB=A