Metamath Proof Explorer


Theorem chcon1i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chcon1i
|- ( ( _|_ ` A ) = B <-> ( _|_ ` B ) = A )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 2 1 chcon2i
 |-  ( B = ( _|_ ` A ) <-> A = ( _|_ ` B ) )
4 eqcom
 |-  ( ( _|_ ` A ) = B <-> B = ( _|_ ` A ) )
5 eqcom
 |-  ( ( _|_ ` B ) = A <-> A = ( _|_ ` B ) )
6 3 4 5 3bitr4i
 |-  ( ( _|_ ` A ) = B <-> ( _|_ ` B ) = A )