Metamath Proof Explorer


Theorem chcon2i

Description: Hilbert lattice contraposition law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chcon2i
|- ( A = ( _|_ ` B ) <-> B = ( _|_ ` A ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 2 chsscon2i
 |-  ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) )
4 2 1 chsscon1i
 |-  ( ( _|_ ` B ) C_ A <-> ( _|_ ` A ) C_ B )
5 3 4 anbi12i
 |-  ( ( A C_ ( _|_ ` B ) /\ ( _|_ ` B ) C_ A ) <-> ( B C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ B ) )
6 eqss
 |-  ( A = ( _|_ ` B ) <-> ( A C_ ( _|_ ` B ) /\ ( _|_ ` B ) C_ A ) )
7 eqss
 |-  ( B = ( _|_ ` A ) <-> ( B C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ B ) )
8 5 6 7 3bitr4i
 |-  ( A = ( _|_ ` B ) <-> B = ( _|_ ` A ) )