Metamath Proof Explorer


Theorem chj0

Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chj0 ACA0=A

Proof

Step Hyp Ref Expression
1 oveq1 A=ifACA0A0=ifACA00
2 id A=ifACA0A=ifACA0
3 1 2 eqeq12d A=ifACA0A0=AifACA00=ifACA0
4 h0elch 0C
5 4 elimel ifACA0C
6 5 chj0i ifACA00=ifACA0
7 3 6 dedth ACA0=A