Metamath Proof Explorer


Theorem chne0

Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion chne0 ACA0xAx0

Proof

Step Hyp Ref Expression
1 neeq1 A=ifACA0A0ifACA00
2 rexeq A=ifACA0xAx0xifACA0x0
3 1 2 bibi12d A=ifACA0A0xAx0ifACA00xifACA0x0
4 h0elch 0C
5 4 elimel ifACA0C
6 5 chne0i ifACA00xifACA0x0
7 3 6 dedth ACA0xAx0