Metamath Proof Explorer


Theorem chocin

Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chocin ACAA=0

Proof

Step Hyp Ref Expression
1 id A=ifACA0A=ifACA0
2 fveq2 A=ifACA0A=ifACA0
3 1 2 ineq12d A=ifACA0AA=ifACA0ifACA0
4 3 eqeq1d A=ifACA0AA=0ifACA0ifACA0=0
5 h0elch 0C
6 5 elimel ifACA0C
7 6 chocini ifACA0ifACA0=0
8 4 7 dedth ACAA=0