Metamath Proof Explorer


Theorem chocin

Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chocin ( 𝐴C → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → 𝐴 = if ( 𝐴C , 𝐴 , 0 ) )
2 fveq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) )
3 1 2 ineq12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = ( if ( 𝐴C , 𝐴 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) )
4 3 eqeq1d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ↔ ( if ( 𝐴C , 𝐴 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) )
5 h0elch 0C
6 5 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
7 6 chocini ( if ( 𝐴C , 𝐴 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0
8 4 7 dedth ( 𝐴C → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 )