| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 2 |
|
sslin |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → ( 𝐴 ∩ 𝐴 ) ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 3 |
1 2
|
eqsstrrid |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 |
|
chocin |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
| 5 |
4
|
sseq2d |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 ⊆ 0ℋ ) ) |
| 6 |
|
chle0 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |
| 7 |
5 6
|
bitrd |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 = 0ℋ ) ) |
| 8 |
3 7
|
imbitrid |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 = 0ℋ ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 𝐴 = 0ℋ ) |
| 10 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 11 |
|
ch0le |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ Cℋ → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 0ℋ ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 14 |
9 13
|
eqsstrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ ) → 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 15 |
14
|
ex |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 = 0ℋ → 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 16 |
8 15
|
impbid |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 = 0ℋ ) ) |