Metamath Proof Explorer


Theorem chssoc

Description: A closed subspace less than its orthocomplement is zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chssoc ( 𝐴C → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 inidm ( 𝐴𝐴 ) = 𝐴
2 sslin ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → ( 𝐴𝐴 ) ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) )
3 1 2 eqsstrrid ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) )
4 chocin ( 𝐴C → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 )
5 4 sseq2d ( 𝐴C → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 ⊆ 0 ) )
6 chle0 ( 𝐴C → ( 𝐴 ⊆ 0𝐴 = 0 ) )
7 5 6 bitrd ( 𝐴C → ( 𝐴 ⊆ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝐴 = 0 ) )
8 3 7 syl5ib ( 𝐴C → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 = 0 ) )
9 simpr ( ( 𝐴C𝐴 = 0 ) → 𝐴 = 0 )
10 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
11 ch0le ( ( ⊥ ‘ 𝐴 ) ∈ C → 0 ⊆ ( ⊥ ‘ 𝐴 ) )
12 10 11 syl ( 𝐴C → 0 ⊆ ( ⊥ ‘ 𝐴 ) )
13 12 adantr ( ( 𝐴C𝐴 = 0 ) → 0 ⊆ ( ⊥ ‘ 𝐴 ) )
14 9 13 eqsstrd ( ( 𝐴C𝐴 = 0 ) → 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) )
15 14 ex ( 𝐴C → ( 𝐴 = 0𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ) )
16 8 15 impbid ( 𝐴C → ( 𝐴 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 = 0 ) )