| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 2 |  | sslin |  |-  ( A C_ ( _|_ ` A ) -> ( A i^i A ) C_ ( A i^i ( _|_ ` A ) ) ) | 
						
							| 3 | 1 2 | eqsstrrid |  |-  ( A C_ ( _|_ ` A ) -> A C_ ( A i^i ( _|_ ` A ) ) ) | 
						
							| 4 |  | chocin |  |-  ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) | 
						
							| 5 | 4 | sseq2d |  |-  ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A C_ 0H ) ) | 
						
							| 6 |  | chle0 |  |-  ( A e. CH -> ( A C_ 0H <-> A = 0H ) ) | 
						
							| 7 | 5 6 | bitrd |  |-  ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A = 0H ) ) | 
						
							| 8 | 3 7 | imbitrid |  |-  ( A e. CH -> ( A C_ ( _|_ ` A ) -> A = 0H ) ) | 
						
							| 9 |  | simpr |  |-  ( ( A e. CH /\ A = 0H ) -> A = 0H ) | 
						
							| 10 |  | choccl |  |-  ( A e. CH -> ( _|_ ` A ) e. CH ) | 
						
							| 11 |  | ch0le |  |-  ( ( _|_ ` A ) e. CH -> 0H C_ ( _|_ ` A ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( A e. CH -> 0H C_ ( _|_ ` A ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. CH /\ A = 0H ) -> 0H C_ ( _|_ ` A ) ) | 
						
							| 14 | 9 13 | eqsstrd |  |-  ( ( A e. CH /\ A = 0H ) -> A C_ ( _|_ ` A ) ) | 
						
							| 15 | 14 | ex |  |-  ( A e. CH -> ( A = 0H -> A C_ ( _|_ ` A ) ) ) | 
						
							| 16 | 8 15 | impbid |  |-  ( A e. CH -> ( A C_ ( _|_ ` A ) <-> A = 0H ) ) |