Metamath Proof Explorer


Theorem chnfibg

Description: Given a partial order, the set of chains is finite iff the alphabet is finite. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnfibg < ˙ Po A A Fin Chain A < ˙ Fin

Proof

Step Hyp Ref Expression
1 chnfi A Fin < ˙ Po A Chain A < ˙ Fin
2 1 expcom < ˙ Po A A Fin Chain A < ˙ Fin
3 chninf A Fin Chain A < ˙ Fin
4 df-nel A Fin ¬ A Fin
5 df-nel Chain A < ˙ Fin ¬ Chain A < ˙ Fin
6 3 4 5 3imtr3i ¬ A Fin ¬ Chain A < ˙ Fin
7 6 con4i Chain A < ˙ Fin A Fin
8 2 7 impbid1 < ˙ Po A A Fin Chain A < ˙ Fin