Metamath Proof Explorer


Theorem chnfibg

Description: Given a partial order, the set of chains is finite iff the alphabet is finite. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnfibg ( < Po 𝐴 → ( 𝐴 ∈ Fin ↔ ( < Chain 𝐴 ) ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 chnfi ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ( < Chain 𝐴 ) ∈ Fin )
2 1 expcom ( < Po 𝐴 → ( 𝐴 ∈ Fin → ( < Chain 𝐴 ) ∈ Fin ) )
3 chninf ( 𝐴 ∉ Fin → ( < Chain 𝐴 ) ∉ Fin )
4 df-nel ( 𝐴 ∉ Fin ↔ ¬ 𝐴 ∈ Fin )
5 df-nel ( ( < Chain 𝐴 ) ∉ Fin ↔ ¬ ( < Chain 𝐴 ) ∈ Fin )
6 3 4 5 3imtr3i ( ¬ 𝐴 ∈ Fin → ¬ ( < Chain 𝐴 ) ∈ Fin )
7 6 con4i ( ( < Chain 𝐴 ) ∈ Fin → 𝐴 ∈ Fin )
8 2 7 impbid1 ( < Po 𝐴 → ( 𝐴 ∈ Fin ↔ ( < Chain 𝐴 ) ∈ Fin ) )