Metamath Proof Explorer


Theorem ex-chn1

Description: Example: a doubleton of twos is a valid chain under the identity relation and domain of integers. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion ex-chn1 ⟨“ 2 2 ”⟩ ∈ ( I Chain ℤ )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 s2cl ( ( 2 ∈ ℤ ∧ 2 ∈ ℤ ) → ⟨“ 2 2 ”⟩ ∈ Word ℤ )
3 1 1 2 mp2an ⟨“ 2 2 ”⟩ ∈ Word ℤ
4 s2dm dom ⟨“ 2 2 ”⟩ = { 0 , 1 }
5 4 difeq1i ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) = ( { 0 , 1 } ∖ { 0 } )
6 5 eleq2i ( 𝑥 ∈ ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) ↔ 𝑥 ∈ ( { 0 , 1 } ∖ { 0 } ) )
7 6 biimpi ( 𝑥 ∈ ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) → 𝑥 ∈ ( { 0 , 1 } ∖ { 0 } ) )
8 difprsnss ( { 0 , 1 } ∖ { 0 } ) ⊆ { 1 }
9 8 sseli ( 𝑥 ∈ ( { 0 , 1 } ∖ { 0 } ) → 𝑥 ∈ { 1 } )
10 9 elsnd ( 𝑥 ∈ ( { 0 , 1 } ∖ { 0 } ) → 𝑥 = 1 )
11 eqid 2 = 2
12 2ex 2 ∈ V
13 12 ideq ( 2 I 2 ↔ 2 = 2 )
14 11 13 mpbir 2 I 2
15 14 a1i ( 𝑥 = 1 → 2 I 2 )
16 oveq1 ( 𝑥 = 1 → ( 𝑥 − 1 ) = ( 1 − 1 ) )
17 1m1e0 ( 1 − 1 ) = 0
18 16 17 eqtrdi ( 𝑥 = 1 → ( 𝑥 − 1 ) = 0 )
19 fveq2 ( ( 𝑥 − 1 ) = 0 → ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) = ( ⟨“ 2 2 ”⟩ ‘ 0 ) )
20 s2fv0 ( 2 ∈ V → ( ⟨“ 2 2 ”⟩ ‘ 0 ) = 2 )
21 12 20 ax-mp ( ⟨“ 2 2 ”⟩ ‘ 0 ) = 2
22 19 21 eqtr2di ( ( 𝑥 − 1 ) = 0 → 2 = ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) )
23 18 22 syl ( 𝑥 = 1 → 2 = ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) )
24 fveq2 ( 𝑥 = 1 → ( ⟨“ 2 2 ”⟩ ‘ 𝑥 ) = ( ⟨“ 2 2 ”⟩ ‘ 1 ) )
25 s2fv1 ( 2 ∈ V → ( ⟨“ 2 2 ”⟩ ‘ 1 ) = 2 )
26 12 25 ax-mp ( ⟨“ 2 2 ”⟩ ‘ 1 ) = 2
27 24 26 eqtr2di ( 𝑥 = 1 → 2 = ( ⟨“ 2 2 ”⟩ ‘ 𝑥 ) )
28 15 23 27 3brtr3d ( 𝑥 = 1 → ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) I ( ⟨“ 2 2 ”⟩ ‘ 𝑥 ) )
29 7 10 28 3syl ( 𝑥 ∈ ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) → ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) I ( ⟨“ 2 2 ”⟩ ‘ 𝑥 ) )
30 29 rgen 𝑥 ∈ ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) I ( ⟨“ 2 2 ”⟩ ‘ 𝑥 )
31 ischn ( ⟨“ 2 2 ”⟩ ∈ ( I Chain ℤ ) ↔ ( ⟨“ 2 2 ”⟩ ∈ Word ℤ ∧ ∀ 𝑥 ∈ ( dom ⟨“ 2 2 ”⟩ ∖ { 0 } ) ( ⟨“ 2 2 ”⟩ ‘ ( 𝑥 − 1 ) ) I ( ⟨“ 2 2 ”⟩ ‘ 𝑥 ) ) )
32 3 30 31 mpbir2an ⟨“ 2 2 ”⟩ ∈ ( I Chain ℤ )