Metamath Proof Explorer


Theorem ex-chn2

Description: Example: sequence <" ZZ NN QQ "> is a valid chain under the equinumerosity relation in universal domain. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion ex-chn2 ⟨“ ℤ ℕ ℚ ”⟩ ∈ ( ≈ Chain V )

Proof

Step Hyp Ref Expression
1 s3cli ⟨“ ℤ ℕ ℚ ”⟩ ∈ Word V
2 zex ℤ ∈ V
3 nnex ℕ ∈ V
4 qex ℚ ∈ V
5 s3fn ( ( ℤ ∈ V ∧ ℕ ∈ V ∧ ℚ ∈ V ) → ⟨“ ℤ ℕ ℚ ”⟩ Fn { 0 , 1 , 2 } )
6 2 3 4 5 mp3an ⟨“ ℤ ℕ ℚ ”⟩ Fn { 0 , 1 , 2 }
7 6 fndmi dom ⟨“ ℤ ℕ ℚ ”⟩ = { 0 , 1 , 2 }
8 7 difeq1i ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) = ( { 0 , 1 , 2 } ∖ { 0 } )
9 tprot { 0 , 1 , 2 } = { 1 , 2 , 0 }
10 9 difeq1i ( { 0 , 1 , 2 } ∖ { 0 } ) = ( { 1 , 2 , 0 } ∖ { 0 } )
11 ax-1ne0 1 ≠ 0
12 2ne0 2 ≠ 0
13 diftpsn3 ( ( 1 ≠ 0 ∧ 2 ≠ 0 ) → ( { 1 , 2 , 0 } ∖ { 0 } ) = { 1 , 2 } )
14 11 12 13 mp2an ( { 1 , 2 , 0 } ∖ { 0 } ) = { 1 , 2 }
15 8 10 14 3eqtri ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) = { 1 , 2 }
16 15 eleq2i ( 𝑥 ∈ ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) ↔ 𝑥 ∈ { 1 , 2 } )
17 16 biimpi ( 𝑥 ∈ ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) → 𝑥 ∈ { 1 , 2 } )
18 elpri ( 𝑥 ∈ { 1 , 2 } → ( 𝑥 = 1 ∨ 𝑥 = 2 ) )
19 znnen ℤ ≈ ℕ
20 19 a1i ( 𝑥 = 1 → ℤ ≈ ℕ )
21 oveq1 ( 𝑥 = 1 → ( 𝑥 − 1 ) = ( 1 − 1 ) )
22 1m1e0 ( 1 − 1 ) = 0
23 21 22 eqtrdi ( 𝑥 = 1 → ( 𝑥 − 1 ) = 0 )
24 23 fveq2d ( 𝑥 = 1 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) = ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 0 ) )
25 s3fv0 ( ℤ ∈ V → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 0 ) = ℤ )
26 2 25 ax-mp ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 0 ) = ℤ
27 24 26 eqtrdi ( 𝑥 = 1 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) = ℤ )
28 fveq2 ( 𝑥 = 1 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) = ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 1 ) )
29 s3fv1 ( ℕ ∈ V → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 1 ) = ℕ )
30 3 29 ax-mp ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 1 ) = ℕ
31 28 30 eqtrdi ( 𝑥 = 1 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) = ℕ )
32 20 27 31 3brtr4d ( 𝑥 = 1 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) )
33 qnnen ℚ ≈ ℕ
34 33 ensymi ℕ ≈ ℚ
35 34 a1i ( 𝑥 = 2 → ℕ ≈ ℚ )
36 oveq1 ( 𝑥 = 2 → ( 𝑥 − 1 ) = ( 2 − 1 ) )
37 2m1e1 ( 2 − 1 ) = 1
38 36 37 eqtrdi ( 𝑥 = 2 → ( 𝑥 − 1 ) = 1 )
39 38 fveq2d ( 𝑥 = 2 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) = ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 1 ) )
40 39 30 eqtrdi ( 𝑥 = 2 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) = ℕ )
41 fveq2 ( 𝑥 = 2 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) = ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 2 ) )
42 s3fv2 ( ℚ ∈ V → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 2 ) = ℚ )
43 4 42 ax-mp ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 2 ) = ℚ
44 41 43 eqtrdi ( 𝑥 = 2 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) = ℚ )
45 35 40 44 3brtr4d ( 𝑥 = 2 → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) )
46 32 45 jaoi ( ( 𝑥 = 1 ∨ 𝑥 = 2 ) → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) )
47 17 18 46 3syl ( 𝑥 ∈ ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) → ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) )
48 47 rgen 𝑥 ∈ ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 )
49 ischn ( ⟨“ ℤ ℕ ℚ ”⟩ ∈ ( ≈ Chain V ) ↔ ( ⟨“ ℤ ℕ ℚ ”⟩ ∈ Word V ∧ ∀ 𝑥 ∈ ( dom ⟨“ ℤ ℕ ℚ ”⟩ ∖ { 0 } ) ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ ( 𝑥 − 1 ) ) ≈ ( ⟨“ ℤ ℕ ℚ ”⟩ ‘ 𝑥 ) ) )
50 1 48 49 mpbir2an ⟨“ ℤ ℕ ℚ ”⟩ ∈ ( ≈ Chain V )