| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s3cli |
|- <" ZZ NN QQ "> e. Word _V |
| 2 |
|
zex |
|- ZZ e. _V |
| 3 |
|
nnex |
|- NN e. _V |
| 4 |
|
qex |
|- QQ e. _V |
| 5 |
|
s3fn |
|- ( ( ZZ e. _V /\ NN e. _V /\ QQ e. _V ) -> <" ZZ NN QQ "> Fn { 0 , 1 , 2 } ) |
| 6 |
2 3 4 5
|
mp3an |
|- <" ZZ NN QQ "> Fn { 0 , 1 , 2 } |
| 7 |
6
|
fndmi |
|- dom <" ZZ NN QQ "> = { 0 , 1 , 2 } |
| 8 |
7
|
difeq1i |
|- ( dom <" ZZ NN QQ "> \ { 0 } ) = ( { 0 , 1 , 2 } \ { 0 } ) |
| 9 |
|
tprot |
|- { 0 , 1 , 2 } = { 1 , 2 , 0 } |
| 10 |
9
|
difeq1i |
|- ( { 0 , 1 , 2 } \ { 0 } ) = ( { 1 , 2 , 0 } \ { 0 } ) |
| 11 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 12 |
|
2ne0 |
|- 2 =/= 0 |
| 13 |
|
diftpsn3 |
|- ( ( 1 =/= 0 /\ 2 =/= 0 ) -> ( { 1 , 2 , 0 } \ { 0 } ) = { 1 , 2 } ) |
| 14 |
11 12 13
|
mp2an |
|- ( { 1 , 2 , 0 } \ { 0 } ) = { 1 , 2 } |
| 15 |
8 10 14
|
3eqtri |
|- ( dom <" ZZ NN QQ "> \ { 0 } ) = { 1 , 2 } |
| 16 |
15
|
eleq2i |
|- ( x e. ( dom <" ZZ NN QQ "> \ { 0 } ) <-> x e. { 1 , 2 } ) |
| 17 |
16
|
biimpi |
|- ( x e. ( dom <" ZZ NN QQ "> \ { 0 } ) -> x e. { 1 , 2 } ) |
| 18 |
|
elpri |
|- ( x e. { 1 , 2 } -> ( x = 1 \/ x = 2 ) ) |
| 19 |
|
znnen |
|- ZZ ~~ NN |
| 20 |
19
|
a1i |
|- ( x = 1 -> ZZ ~~ NN ) |
| 21 |
|
oveq1 |
|- ( x = 1 -> ( x - 1 ) = ( 1 - 1 ) ) |
| 22 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 23 |
21 22
|
eqtrdi |
|- ( x = 1 -> ( x - 1 ) = 0 ) |
| 24 |
23
|
fveq2d |
|- ( x = 1 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) = ( <" ZZ NN QQ "> ` 0 ) ) |
| 25 |
|
s3fv0 |
|- ( ZZ e. _V -> ( <" ZZ NN QQ "> ` 0 ) = ZZ ) |
| 26 |
2 25
|
ax-mp |
|- ( <" ZZ NN QQ "> ` 0 ) = ZZ |
| 27 |
24 26
|
eqtrdi |
|- ( x = 1 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) = ZZ ) |
| 28 |
|
fveq2 |
|- ( x = 1 -> ( <" ZZ NN QQ "> ` x ) = ( <" ZZ NN QQ "> ` 1 ) ) |
| 29 |
|
s3fv1 |
|- ( NN e. _V -> ( <" ZZ NN QQ "> ` 1 ) = NN ) |
| 30 |
3 29
|
ax-mp |
|- ( <" ZZ NN QQ "> ` 1 ) = NN |
| 31 |
28 30
|
eqtrdi |
|- ( x = 1 -> ( <" ZZ NN QQ "> ` x ) = NN ) |
| 32 |
20 27 31
|
3brtr4d |
|- ( x = 1 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) ) |
| 33 |
|
qnnen |
|- QQ ~~ NN |
| 34 |
33
|
ensymi |
|- NN ~~ QQ |
| 35 |
34
|
a1i |
|- ( x = 2 -> NN ~~ QQ ) |
| 36 |
|
oveq1 |
|- ( x = 2 -> ( x - 1 ) = ( 2 - 1 ) ) |
| 37 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 38 |
36 37
|
eqtrdi |
|- ( x = 2 -> ( x - 1 ) = 1 ) |
| 39 |
38
|
fveq2d |
|- ( x = 2 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) = ( <" ZZ NN QQ "> ` 1 ) ) |
| 40 |
39 30
|
eqtrdi |
|- ( x = 2 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) = NN ) |
| 41 |
|
fveq2 |
|- ( x = 2 -> ( <" ZZ NN QQ "> ` x ) = ( <" ZZ NN QQ "> ` 2 ) ) |
| 42 |
|
s3fv2 |
|- ( QQ e. _V -> ( <" ZZ NN QQ "> ` 2 ) = QQ ) |
| 43 |
4 42
|
ax-mp |
|- ( <" ZZ NN QQ "> ` 2 ) = QQ |
| 44 |
41 43
|
eqtrdi |
|- ( x = 2 -> ( <" ZZ NN QQ "> ` x ) = QQ ) |
| 45 |
35 40 44
|
3brtr4d |
|- ( x = 2 -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) ) |
| 46 |
32 45
|
jaoi |
|- ( ( x = 1 \/ x = 2 ) -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) ) |
| 47 |
17 18 46
|
3syl |
|- ( x e. ( dom <" ZZ NN QQ "> \ { 0 } ) -> ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) ) |
| 48 |
47
|
rgen |
|- A. x e. ( dom <" ZZ NN QQ "> \ { 0 } ) ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) |
| 49 |
|
ischn |
|- ( <" ZZ NN QQ "> e. ( ~~ Chain _V ) <-> ( <" ZZ NN QQ "> e. Word _V /\ A. x e. ( dom <" ZZ NN QQ "> \ { 0 } ) ( <" ZZ NN QQ "> ` ( x - 1 ) ) ~~ ( <" ZZ NN QQ "> ` x ) ) ) |
| 50 |
1 48 49
|
mpbir2an |
|- <" ZZ NN QQ "> e. ( ~~ Chain _V ) |