Metamath Proof Explorer


Theorem chninf

Description: There is an infinite number of chains for any infinite alphabet and any relation. For instance, all the singletons of alphabet characters match. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chninf ( 𝐴 ∉ Fin → ( < Chain 𝐴 ) ∉ Fin )

Proof

Step Hyp Ref Expression
1 id ( 𝑦𝐴𝑦𝐴 )
2 1 s1chn ( 𝑦𝐴 → ⟨“ 𝑦 ”⟩ ∈ ( < Chain 𝐴 ) )
3 2 rgen 𝑦𝐴 ⟨“ 𝑦 ”⟩ ∈ ( < Chain 𝐴 )
4 s111 ( ( 𝑦𝐴𝑥𝐴 ) → ( ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ ↔ 𝑦 = 𝑥 ) )
5 4 biimpd ( ( 𝑦𝐴𝑥𝐴 ) → ( ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ → 𝑦 = 𝑥 ) )
6 5 rgen2 𝑦𝐴𝑥𝐴 ( ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ → 𝑦 = 𝑥 )
7 3 6 pm3.2i ( ∀ 𝑦𝐴 ⟨“ 𝑦 ”⟩ ∈ ( < Chain 𝐴 ) ∧ ∀ 𝑦𝐴𝑥𝐴 ( ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ → 𝑦 = 𝑥 ) )
8 eqid ( 𝑦𝐴 ↦ ⟨“ 𝑦 ”⟩ ) = ( 𝑦𝐴 ↦ ⟨“ 𝑦 ”⟩ )
9 s1eq ( 𝑦 = 𝑥 → ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ )
10 8 9 f1mpt ( ( 𝑦𝐴 ↦ ⟨“ 𝑦 ”⟩ ) : 𝐴1-1→ ( < Chain 𝐴 ) ↔ ( ∀ 𝑦𝐴 ⟨“ 𝑦 ”⟩ ∈ ( < Chain 𝐴 ) ∧ ∀ 𝑦𝐴𝑥𝐴 ( ⟨“ 𝑦 ”⟩ = ⟨“ 𝑥 ”⟩ → 𝑦 = 𝑥 ) ) )
11 7 10 mpbir ( 𝑦𝐴 ↦ ⟨“ 𝑦 ”⟩ ) : 𝐴1-1→ ( < Chain 𝐴 )
12 f1fi ( ( ( < Chain 𝐴 ) ∈ Fin ∧ ( 𝑦𝐴 ↦ ⟨“ 𝑦 ”⟩ ) : 𝐴1-1→ ( < Chain 𝐴 ) ) → 𝐴 ∈ Fin )
13 11 12 mpan2 ( ( < Chain 𝐴 ) ∈ Fin → 𝐴 ∈ Fin )
14 13 a1i ( ⊤ → ( ( < Chain 𝐴 ) ∈ Fin → 𝐴 ∈ Fin ) )
15 14 nelcon3d ( ⊤ → ( 𝐴 ∉ Fin → ( < Chain 𝐴 ) ∉ Fin ) )
16 15 mptru ( 𝐴 ∉ Fin → ( < Chain 𝐴 ) ∉ Fin )