Metamath Proof Explorer


Theorem chninf

Description: There is an infinite number of chains for any infinite alphabet and any relation. For instance, all the singletons of alphabet characters match. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chninf
|- ( A e/ Fin -> ( .< Chain A ) e/ Fin )

Proof

Step Hyp Ref Expression
1 id
 |-  ( y e. A -> y e. A )
2 1 s1chn
 |-  ( y e. A -> <" y "> e. ( .< Chain A ) )
3 2 rgen
 |-  A. y e. A <" y "> e. ( .< Chain A )
4 s111
 |-  ( ( y e. A /\ x e. A ) -> ( <" y "> = <" x "> <-> y = x ) )
5 4 biimpd
 |-  ( ( y e. A /\ x e. A ) -> ( <" y "> = <" x "> -> y = x ) )
6 5 rgen2
 |-  A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x )
7 3 6 pm3.2i
 |-  ( A. y e. A <" y "> e. ( .< Chain A ) /\ A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x ) )
8 eqid
 |-  ( y e. A |-> <" y "> ) = ( y e. A |-> <" y "> )
9 s1eq
 |-  ( y = x -> <" y "> = <" x "> )
10 8 9 f1mpt
 |-  ( ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A ) <-> ( A. y e. A <" y "> e. ( .< Chain A ) /\ A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x ) ) )
11 7 10 mpbir
 |-  ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A )
12 f1fi
 |-  ( ( ( .< Chain A ) e. Fin /\ ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A ) ) -> A e. Fin )
13 11 12 mpan2
 |-  ( ( .< Chain A ) e. Fin -> A e. Fin )
14 13 a1i
 |-  ( T. -> ( ( .< Chain A ) e. Fin -> A e. Fin ) )
15 14 nelcon3d
 |-  ( T. -> ( A e/ Fin -> ( .< Chain A ) e/ Fin ) )
16 15 mptru
 |-  ( A e/ Fin -> ( .< Chain A ) e/ Fin )