| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( y e. A -> y e. A ) |
| 2 |
1
|
s1chn |
|- ( y e. A -> <" y "> e. ( .< Chain A ) ) |
| 3 |
2
|
rgen |
|- A. y e. A <" y "> e. ( .< Chain A ) |
| 4 |
|
s111 |
|- ( ( y e. A /\ x e. A ) -> ( <" y "> = <" x "> <-> y = x ) ) |
| 5 |
4
|
biimpd |
|- ( ( y e. A /\ x e. A ) -> ( <" y "> = <" x "> -> y = x ) ) |
| 6 |
5
|
rgen2 |
|- A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x ) |
| 7 |
3 6
|
pm3.2i |
|- ( A. y e. A <" y "> e. ( .< Chain A ) /\ A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x ) ) |
| 8 |
|
eqid |
|- ( y e. A |-> <" y "> ) = ( y e. A |-> <" y "> ) |
| 9 |
|
s1eq |
|- ( y = x -> <" y "> = <" x "> ) |
| 10 |
8 9
|
f1mpt |
|- ( ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A ) <-> ( A. y e. A <" y "> e. ( .< Chain A ) /\ A. y e. A A. x e. A ( <" y "> = <" x "> -> y = x ) ) ) |
| 11 |
7 10
|
mpbir |
|- ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A ) |
| 12 |
|
f1fi |
|- ( ( ( .< Chain A ) e. Fin /\ ( y e. A |-> <" y "> ) : A -1-1-> ( .< Chain A ) ) -> A e. Fin ) |
| 13 |
11 12
|
mpan2 |
|- ( ( .< Chain A ) e. Fin -> A e. Fin ) |
| 14 |
13
|
a1i |
|- ( T. -> ( ( .< Chain A ) e. Fin -> A e. Fin ) ) |
| 15 |
14
|
nelcon3d |
|- ( T. -> ( A e/ Fin -> ( .< Chain A ) e/ Fin ) ) |
| 16 |
15
|
mptru |
|- ( A e/ Fin -> ( .< Chain A ) e/ Fin ) |