Metamath Proof Explorer


Theorem chnfibg

Description: Given a partial order, the set of chains is finite iff the alphabet is finite. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnfibg
|- ( .< Po A -> ( A e. Fin <-> ( .< Chain A ) e. Fin ) )

Proof

Step Hyp Ref Expression
1 chnfi
 |-  ( ( A e. Fin /\ .< Po A ) -> ( .< Chain A ) e. Fin )
2 1 expcom
 |-  ( .< Po A -> ( A e. Fin -> ( .< Chain A ) e. Fin ) )
3 chninf
 |-  ( A e/ Fin -> ( .< Chain A ) e/ Fin )
4 df-nel
 |-  ( A e/ Fin <-> -. A e. Fin )
5 df-nel
 |-  ( ( .< Chain A ) e/ Fin <-> -. ( .< Chain A ) e. Fin )
6 3 4 5 3imtr3i
 |-  ( -. A e. Fin -> -. ( .< Chain A ) e. Fin )
7 6 con4i
 |-  ( ( .< Chain A ) e. Fin -> A e. Fin )
8 2 7 impbid1
 |-  ( .< Po A -> ( A e. Fin <-> ( .< Chain A ) e. Fin ) )